The Involvement of Titanocene and Related Species in the Reduction of Dinitrogen and Olefins

By E. E. VAN TAMELEN,* **W.** CRETNEY, N. KLAENTSCHI, and J. S. MILLER *(Department of Chemistry, Stanford University, Stanford, California* **94305)**

Summary Four sequential products have been spectrally detected in the reduction by sodium of dicyclopentadienyltitanium(IV) dichloride: $[(\pi-\text{Cp})_2]\text{Tic}$ $[(\pi-\text{Cp})_2]$ - $\text{Ti}|_{1-2}$, $[(\pi-\text{Cp})(\text{C}_5\text{H}_4)\text{Ti}\text{H}]_x$, and $(\pi-\text{Cp})(\text{C}_5\text{H}_4)\text{Ti}\text{H}_2\text{Ti}$ $(C₆H₄)(\pi$ -Cp) ("stable titanocene"); the second of these reacts rapidly and reversibly with N_2 to give a dark blue complex reducible to ammonia and appears to catalyse the cyclopentadienyltitanium-promoted rapid, room temperature-atmospheric pressure hydrogenation of olefins.

In one procedure for titanocene induced N_2 fixation,^{1,2} $(\pi$ -Cp)₃TiCl₂ in toluene is stirred at room temperature with sodium sand under N₂ at atmospheric pressure;³ subsequent

hydrolysis gives NH,. Visible and i.r. spectroscopy have now been used to detect titanium species which appear in

FIGURE 1. *Visible spectra of* **A** $\left(\begin{array}{cc} - & \end{array}\right)$, **B** $\left(\begin{array}{cc} - & - \end{array}\right)$, **C** $\left(\begin{array}{cc} - & - \end{array}\right)$, D (---------), and E (\cdots) in toluene at room temperature under *argon.*

the following sequence as a consequence of reaction **of** $(\pi$ -Cp)₂TiCl₂ with sodium under argon (Figure 1): A, $(\pi$ -Cp)₂TiCl₂; B, $[(\pi$ -Cp)₂TiCl₁₂; C, $[(\pi$ -Cp)₂Ti₁₋₂; D, $[(\pi\text{-}Cp)(C_5H_4)\text{TiH}]_x$; and E, "stable titanocene", $[(\pi\text{-}Cp)\text{-}C_5H_4]$ (C_5H_4) TiH]₂,⁴ the final product. Under nitrogen, only A, B, and C could be spectrally detected in turn, following which a black precipitate appeared; hydrolysis of the mixture yielded 0.6-0-7 NH,:Ti. Whereas **A,** B, D, and E in solution do not react with N_2 , "active titanocene," C (prepared by use of 2 equiv. Na under argon for $6-10$ days followed by filtration in drybox) in toluene reacts rapidly and reversibly with N_2 below room temperature, forming a dark blue complex (Figure **2).** In the i.r. spectrum, C

FIGURE 2. *Visible spectra of* $[(\pi-\text{Cp})_2\text{Ti}]_2\text{N}_2$ *in toluene as a function of temperature.*

revealed intense peaks at 790 and 1010 cm^{-1} but no absorption between 1800-2100 cm⁻¹ or 1200-1250 cm⁻¹, consistent with the absence of either terminal or bridging Ti-H bonds and the presence of only π -bonded (Cp) ligands;⁵ with CO, C in toluene is converted to $\mathbf{Cp}_2\mathrm{Ti}(\mathrm{CO})_2$.^{†6} Highly unstable at room temperature under argon, C generates D, which displays i.r. bands at 1815 and 1960 cm⁻¹, representing Ti-H stretching vibrations,' and **660** cm-l, ascribed to multiple bond character in a carbene complexlike TiC₅H₄ unit. The latter peak is not observed for C but is present in the spectrum of **E.4** In agreement with this interpretation, Ti-D frequencies in perdeuteriated D

t Although the basis for comparison is weak, compound *C* may very well be identical to the metastable titanocene dimer obtained by Marvich and Brintzinger^{2b} by a much more indirect route and reported to have physical and chemical properties very similar to those of C.

appear at 1305 and 1355 cm⁻¹, while the 660 cm^{-1} peak remains unchanged. If C in toluene is stirred for prolonged periods over sodium or heated at 100" for some hours, E is formed. Earlier observations and conclusions,^{1,2} supplemented by these new findings, permit structural proposals and sequences comprising part of the Scheme.

In a new, titanocene-based method for rapid, room temperature-atmospheric pressure alkene hydrogenation,* a solution of sodium or lithium naphthalenide **(Np)** in THF was slowly added dropwise under an $H₂$ atmosphere to a rapidly stirred solution of $[(\pi-\mathbb{C}p)_2]\text{TiCl}_2^{\circ}$ or $(\pi-\mathbb{C}p)_2\text{TiCl}_2$ and dec-l-ene (Ti : olefin molar ratio of 1 : **4)** in THF. Before one equiv. of Np (or two equiv. in the case of Ti^{IV} dichloride) had been added, a very rapid uptake of $H₂$ commenced. Hydrogenation was complete within 1 h and before all the Np theoretically required to reduce all the titanium to Ti^{II} had been added. The product isolated was >95% pure decane, accompanied by small amounts of *cis*and trans-dec-2-ene.

The short-lived but powerful hydrogenation catalyst is thought to be titanocene C. No room temperature hydrogenation-isomerization of dec-1-ene (in THF under H_2) occurs with (i) Np in the absence of titanium compound, (ii) $[(\pi-\text{Cp})_2]\text{Tic}$ in the absence of Np, (iii) equivalent amounts of $(\pi$ -Cp)₂TiCl₂ and LiH, which by themselves generate $(Cp_2Ticl)_2$ and H_2 , (iv) titanocene E, prepared¹⁰ by reaction of Np and $(\pi-\text{Cp})_2$ TiCl₂ or (v) Np and titanocene E. With sodium sand and napthalene in place of Np, hydrogenation of dec-l-ene still occurs; but in the *absence* of the olefin, C is generated under these conditions. These observations exclude the possibility of catalysis by **A,** B, D, and E, and are consistent with the hydrogenation mechanism: included in the Scheme.

We thank the National Institutes of Health for financial support.

(Received, 7th Februwy 1972; *Corn.* **185.)**

²The bridging hydrides $[(\pi-\text{Cp})_2\text{TiH}_2\text{T}i(\pi-\text{Cp})_2]^{\text{10}}$ and $[(\pi-\text{Cp})_2\text{TiH}]_x^{\text{2b}}$ also might be catalysts for the hydrogenation.

1 For a review, see E. E. van Tamelen, *Accounis* Chem. *Res.,* 1970, **3,** 361.

² Brintzinger and his co-workers have provided further supporting evidence for the role of titanocene monomer in the co-ordination process: (a) J. E. Bercaw and H. H. Brintzinger, *J. Amer. Chem. Soc.*, 1971, **93**, 2045; $ikid.$, 1971, 93, 2046. However, see E. Bayer and V. Schurig, *Chem. Ber.*, 1969, 102, 3378.
³ This procedure has been employed in the preparation of "stable" titanocene dimer: J. J. Salzmann and P. Mosimann, *Helv.*

Chins. Acta., 1967, **50,** 1831.

⁴ H. H. Brintzinger and J. E. Bercaw, *J. Amer. Chem. Soc.*, 1970, 92, 6182.
⁵ K. Nakamoto, "Infrared Spectra of Inorganic and Co-ordination Compounds," Wiley-Interscience, New York, 1970, p. 168.

9 J. G. Murray, *J. Amer. Chem. Soc.***, 1959, 81, 752. 7**
⁷ D. M. Adams, "Metal Ligands and Related Vibrations", St. Martin's Press, New York, 1968, p. 3.

l-Methyallyldicyclopentadienyltitanium (111) has previously been used to effect the isomerization and hydrogenation of unsatura-² 1-Methyahylincyclopentalialyltitalialialiai in prison chemic speed to the left of hydrocarbons. H. A. Martin and R. O. de Jongh, *Chem. Comm.*, 1969, 1366.
²⁶ G. W. Watt and F. O. Drummond, jun., *J. Amer. Chem. Soc*