The Involvement of Titanocene and Related Species in the Reduction of Dinitrogen and Olefins

By E. E. VAN TAMELEN,* W. CRETNEY, N. KLAENTSCHI, and J. S. MILLER (Department of Chemistry, Stanford University, Stanford, California 94305)

Summary Four sequential products have been spectrally detected in the reduction by sodium of dicyclopentadienyltitanium(IV) dichloride: $[(\pi\text{-Cp})_2\text{TiCl}]_2$, $[(\pi\text{-Cp})_2\text{Ti}]_{1-2}$, $[(\pi\text{-Cp})(C_5H_4)\text{TiH}]_x$, and $(\pi\text{-Cp})(C_5H_4)\text{TiH}_2\text{Ti-}(C_5H_4)(\pi\text{-Cp})$ ("stable titanocene"); the second of these reacts rapidly and reversibly with N₂ to give a dark blue complex reducible to ammonia and appears to catalyse the cyclopentadienyltitanium-promoted rapid, room temperature-atmospheric pressure hydrogenation of ole-fins.

IN one procedure for titanocene induced N₂ fixation,^{1,2} $(\pi$ -Cp)₂TiCl₂ in toluene is stirred at room temperature with sodium sand under N₂ at atmospheric pressure;³ subsequent

hydrolysis gives NH_3 . Visible and i.r. spectroscopy have now been used to detect titanium species which appear in

FIGURE 1. Visible spectra of A (----), B (----), C (·-·-·), D (----), and E (·····) in toluene at room temperature under argon.

the following sequence as a consequence of reaction of $(\pi$ -Cp)₂TiCl₂ with sodium under argon (Figure 1): A, $(\pi$ -Cp)₂TiCl₂; B, $[(\pi$ -Cp)₂TiCl]₂; C, $[(\pi$ -Cp)₂Ti]_{1-2}; D, $[(\pi$ -Cp)(C₅H₄)TiH]_x; and E, "stable titanocene", $[(\pi$ -Cp)(C₅H₄)TiH]₂,⁴ the final product. Under nitrogen, only A, B, and C could be spectrally detected in turn, following which a black precipitate appeared; hydrolysis of the mixture yielded 0.6–0.7 NH₃:Ti. Whereas A, B, D, and E in solution do not react with N₂, "active titanocene," C (prepared by use of 2 equiv. Na under argon for 6—10 days followed by filtration in drybox) in toluene reacts rapidly and reversibly with N₂ below room temperature, forming a dark blue complex (Figure 2). In the i.r. spectrum, C

FIGURE 2. Visible spectra of $[(\pi-Cp)_2Ti]_2N_2$ in toluene as a function of temperature.

revealed intense peaks at 790 and 1010 cm^{-1} but no absorption between $1800-2100 \text{ cm}^{-1}$ or $1200-1250 \text{ cm}^{-1}$, consistent with the absence of either terminal or bridging Ti-H bonds and the presence of only π -bonded (Cp) ligands;⁵ with CO, C in toluene is converted to Cp₂Ti(CO)₂.†⁶ Highly unstable at room temperature under argon, C generates D, which displays i.r. bands at 1815 and 1960 cm⁻¹, representing Ti-H stretching vibrations,⁷ and 660 cm⁻¹, ascribed to multiple bond character in a carbene complex-like TiC₅H₄ unit. The latter peak is not observed for C but is present in the spectrum of E.⁴ In agreement with this interpretation, Ti-D frequencies in perdeuteriated D

 \dagger Although the basis for comparison is weak, compound C may very well be identical to the metastable titanocene dimer obtained by Marvich and Brintzinger^{2b} by a much more indirect route and reported to have physical and chemical properties very similar to those of C. appear at 1305 and 1355 cm^{-1} , while the 660 cm⁻¹ peak remains unchanged. If C in toluene is stirred for prolonged periods over sodium or heated at 100° for some hours, E is formed. Earlier observations and conclusions,^{1,2} supplemented by these new findings, permit structural proposals and sequences comprising part of the Scheme.

In a new, titanocene-based method for rapid, room temperature-atmospheric pressure alkene hydrogenation,⁸ a solution of sodium or lithium naphthalenide (Np) in THF was slowly added dropwise under an H₂ atmosphere to a rapidly stirred solution of $[(\pi-Cp)_2TiCl]_2^9$ or $(\pi-Cp)_2TiCl_2$ and dec-1-ene (Ti: olefin molar ratio of 1:4) in THF. Before one equiv. of Np (or two equiv. in the case of Ti^{IV} dichloride) had been added, a very rapid uptake of H₂ commenced. Hydrogenation was complete within 1 h and before all the Np theoretically required to reduce all the titanium to Ti^{II} had been added. The product isolated was >95% pure decane, accompanied by small amounts of *cis*and trans-dec-2-ene.

The short-lived but powerful hydrogenation catalyst is thought to be titanocene C. No room temperature hydrogenation-isomerization of dec-1-ene (in THF under H₂) occurs with (i) Np in the absence of titanium compound, (ii) $[(\pi-Cp)_2TiCl]_2$ in the absence of Np, (iii) equivalent amounts of $(\pi$ -Cp)₂TiCl₂ and LiH, which by themselves generate (Cp₂TiCl)₂ and H₂, (iv) titanocene E, prepared¹⁰ by reaction of Np and $(\pi$ -Cp)₂TiCl₂ or (v) Np and titanocene E. With sodium sand and napthalene in place of Np, hydrogenation of dec-1-ene still occurs; but in the absence of the olefin, C is generated under these conditions. These observations exclude the possibility of catalysis by A, B, D, and E, and are consistent with the hydrogenation mechanism[†] included in the Scheme.

We thank the National Institutes of Health for financial support.

(Received, 7th February 1972; Com. 185.)

[‡] The bridging hydrides $[(\pi$ -Cp)₂TiH₂Ti $(\pi$ -Cp)₂]¹⁰ and $[(\pi$ -Cp)₂TiH]_x^{2b} also might be catalysts for the hydrogenation.

¹ For a review, see E. E. van Tamelen, Accounts Chem. Res., 1970, 3, 361.

^a Brintzinger and his co-workers have provided further supporting evidence for the role of titanocene monomer in the co-ordination process: (a) J. E. Bercaw and H. H. Brintzinger, *J. Amer. Chem. Soc.*, 1971, 93, 2045; (b) R. H. Marvich and H. H. Brintzinger, *ibid.*, 1971, 93, 2046. However, see E. Bayer and V. Schurig, *Chem. Ber.*, 1969, 102, 3378. ^a This procedure has been employed in the preparation of "stable" titanocene dimer: J. J. Salzmann and P. Mosimann, *Helv.*

Chim. Acta., 1967, 50, 1831.

⁴ H. H. Brintzinger and J. E. Bercaw, J. Amer. Chem. Soc., 1970, 92, 6182.
⁵ K. Nakamoto, "Infrared Spectra of Inorganic and Co-ordination Compounds," Wiley-Interscience, New York, 1970, p. 168.
⁶ J. G. Murray, J. Amer. Chem. Soc., 1959, 81, 752.
⁷ D. M. Adams, "Metal Ligands and Related Vibrations", St. Martin's Press, New York, 1968, p. 3.

⁸ 1-Methyallyldicyclopentadienyltitanium(III) has previously been used to effect the isomerization and hydrogenation of unsatura-ted hydrocarbons. H. A. Martin and R. O. de Jongh, Chem. Comm., 1969, 1366.
 ⁹ G. W. Watt and F. O. Drummond, jun., J. Amer. Chem. Soc., 1970, 92, 826.
 ¹⁰ J. E. Bercaw and H. H. Brintzinger, J. Amer. Chem. Soc., 1969, 91, 7301.